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Basic Field Situation 

 From a population of S sampling units, 

s are selected and surveyed for the 

species. 

 Units are closed to changes in 

occupancy during a common ‘season’. 

 Units must be repeatedly surveyed 

within a season. 

 Camera-trap surveys: typically 

temporal replication based on fixed 

time periods (daily, weekly) 
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Resulting Data 

Unit 1 

1 101 

2 000 

3 100 

. . 

. . 

. . 

. . 

s 000 
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Single Season Model 

 

  = probability a unit is occupied. 

 

 pj = probability species is detected at 

 a unit in survey j (given 

 presence). 

 



Detection Probability in 

Camera-trap Studies 

 Pr (detect species at unit i survey j) = 

 

Pr (unit occupied during season) 

 

x Pr (at least 1 individual of species passes 

 camera trap during survey j) 

 

x Pr (species detected in survey j | unit 

 occupied and at least 1 individual 

 passes camera trap during survey j)  
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Detection Probability in 

Camera-trap Studies 

 Detection probability thus has 2 

components: 

 

 One based on space use 

 

 One based on camera  

• Camera must be “tripped” 

• Photo must permit species ID   
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Single Season Model 

 Investigating patterns in occupancy. 

 

 Variety of approaches all recognizing that an 

observed ‘absence’ may be the result of a true 

absence or a nondetection. (e.g., Hewitt 1967, 

Geissler and Fuller 1987, Azuma et al. 1990, MacKenzie et 

al. 2002, Tyre et al. 2003, Wintle et al. 2004 and Stauffer et 

al. 2004) 

 

 MacKenzie et al. (2002) provide most general 

treatment of the problem. 
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Single Season Model 

 Consider the data consists of 2 ‘layers’ 

1. True presence/absence of the species. 

2. Observed data which are conditional upon 
species distribution. 

 

 Knowledge about the first layer is 
imperfect. 

 

 Must account for the observation process 
to make reliable inferences about 
occurrence.  



9 

Model Development 
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Observed Data Likelihood 

 Model all possible stochastic 

processes that may have resulted in 

observed detection histories. 

 

 Take verbal description of the 

observed data and translate it into a 

mathematical equation. 
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Observed Data Likelihood 

For example, 

 

Verbal description: species is present at the 

unit, was detected in first and third survey, 

not detected in second survey. 

 

Mathematical translation: 

1 101h

   1 1 2 3Pr 101 ψ 1p p p  h
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Observed Data Likelihood 

For example, 

 

Verbal description: species is present at the 

unit and was never detected, OR species is 

absent. 

 

Mathematical translation: 

2 000h

     
3

2

1

Pr 000 ψ 1 1 ψj

j

p


    h
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Observed Data Likelihood 

Biological 

Reality 

Present 

Absent 



1 

0 

0 

0 

0 
1 

1 

1 

0 

0 

0 
1 

1 

1 

1

Observations 

1p

11 p

2p

2p

21 p

21 p

3p

31 p

3p

31 p

3p

31 p

3p

31 p

1 2 3p p p111 

110 
101 

100 
011 

010 
001 

000 

 1 2 31p p p 
 1 2 31p p p 

  1 2 31 1p p p  
 1 2 31 p p p 

   1 2 31 1p p p  
  1 2 31 1p p p  

   1 2 31 1 1p p p   

0 

0 

0 000 1

1

1

1
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Observed Data Likelihood 

Biological 

Reality 

Present 

Absent 


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Observed Data Likelihood 
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Observed Data Likelihood 

 Model likelihood is the product of the 
probability statements. 

 

 

 

 Likelihood can be maximized to obtain 
MLE’s, or used within a Bayesian 
framework. 

     
1

, Pr , Pr
s

i

i

ODL


   p h h p h
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Complete Data Likelihood 

 The data we wish we had! 

 

 zi is true presence/absence of species 

at unit i 

 

 Bernoulli random variable with 

Pr(success) = ψ 
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Complete Data Likelihood 

   

 

    

 

   

 

 Compare with:  

   
1

Pr 1
ii

zz

iz


  

 Pr 0 1iz   

 Pr 1iz   

 1
n xx

n
p p

x

 
 

 
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Complete Data Likelihood 

 hij is detection/nondetection of species 

(given presence) in survey j of unit i 

 Bernoulli random variable with 

Pr(success) = p 

   
1

Pr , 1 1
ijij

hh

ij j i j jh p z p p


  
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Complete Data Likelihood 

 Combining these terms, the overall 

likelihood can be expressed as: 

 

 

 

 

 

 Note that many terms will disappear 

     

   

1 1

1 1

1 1

, , Pr , 1 Pr

1 1

i

ij iij i

s k

ij j i i

i j

z
s k

h zh z

j j

i j

CDL h p z z
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 

 

 

          

   
     

   

 

 

p h z
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Complete Data Likelihood 

 For example, if zi = 1 and hi = 101 

     

 

1 1

1

1 2 3

, , 1 1

1

i

ij iij i

z
k

h zh z

i i j j

j

CDL z p p

p p p

 



 
     

 

  

p h
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Complete Data Likelihood 

 For example, if zi = 1 and hi = 000 

     

 

1 1

1

3

1

, , 1 1

1

i

ij iij i

z
k

h zh z

i i j j

j

j

j

CDL z p p

p

 





 
     

 

  





p h
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Complete Data Likelihood 

 For example, if zi = 0 and hi = 000 

     

 

1 1

1

, , 1 1

1

i

ij iij i

z
k

h zh z

i i j j

j

CDL z p p
 



 
     

 

 

p h
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Complete Data Likelihood 

 Unfortunately, the true values will 
typically be unknown 

 

 Solutions: 

 Replace with expected values 
• Expectation – Maximization (EM) 

Algorithm 

 

 Replace with imputed values (data 
augmentation) 

• Markov Chain Monte Carlo (MCMC) 
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Complete Data Likelihood 

 CDL can also be expanded to include 

units that were never surveyed 

     

 

1 1

1 1

1

1

, , 1 1

1

i

ij iij i
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z
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S
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Covariates 

 Season-specific 

 constant within a season, but may 

vary between seasons. 

e.g., habitat type, patch size, generalized 

weather patterns 

 

 Survey-specific 

 may vary between surveys. 

e.g., local environmental conditions, 

observers 



27 

Covariates 

 Occupancy and detection probabilities 

may be functions of season-specific 

covariates (via logit link, say). 

 logit ψ a bi ix 

 logit c dij ip x 
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Covariates 

 Detection probabilities may also be a 

function of survey-specific covariates. 

 logit c d eij i ijp x z  
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Covariates 

 Covariates may be continuous or 
categorical. 

 

 Advisable to standardize continuous 
covariates on to some meaningful scale 
such that covariates are approximately 
symmetrically distributed about zero. 

 

 

 

 z-transformation can be done within 
PRESENCE. 

* i
i

x a
x

b



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Covariates 

 Categorical covariates with m 
categories should be represented with 
m – 1 indicator (dummy) variables. 

 

 e.g., if 4 habitat types, use 3 indicator 
variables; HabA, HabB, HabC, with 
habitat D considered the ‘standard’. 

 

 However, suggest all m indicator 
variables be included in data file. 
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‘Missing’ Observations 

 Implicit assumption that jth surveys of all 

units are conducted at (approximately) 

the same time; possibly unlikely in 

practice. 

 

 Camera failure or destruction may result 

in some units not being surveyed during 

some occasions. 
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‘Missing’ Observations 

Day 

Unit 1 2 3 4 5 

1 1 0 1 - 0 

2 - 0 - 1 1 

     1 1 2 3 5Pr 101 0 ψ 1 1p p p p    h

   2 2 4 5Pr 0 11 ψ 1 p p p    h
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‘Missing’ Observations 

 Survey-specific covariates can only be 

missing if associated detection survey 

is also missing. 

 

 Season-specific covariates cannot be 

missing. 
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Pr(occupied|nondetection) 

 “Given the species was not detected, 

is the unit occupied?” is sometimes of 

interest. 

 

 Can be derived from modelling results 

using Bayes theorem. 

 

 Referred to as “conditional” (on 

nondetection) occupancy 
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Pr(occupied|nondetection) 

 
 

 

 

   

1

1

Pr occupied & nondetection
Pr occupied nondetection

Pr nondetection

1

1 1

K

i ij

j

K

i ij i

j

p

p







 



   





 Standard errors can be derived with 

the delta method. 



Single Season 

Model 

Part II 
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Model Assumptions 

 Closure. 

 Surveys are independent. 

 No unmodelled heterogeneity. 

 Species identified correctly (no false 

detections) 
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What if Occupancy 

Changes? 

 Can formally test by grouping sampling 
occasions within the season and using 
multiseason models 

 

 But changes do not always cause problems 

 

 If species physically occupies units at 
random within a season, ‘occupancy’ 
parameter relates to probability a unit is 
used by the species. 
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What if Occupancy 

Changes? 

 

 

 

 

Pr detect species at unit  in survey 

Pr uses unit  during season

Pr physically present at unit at uses unit

Pr detection in survey present and uses unit

i j

i

j

j







 Closure implies 2nd component = 1. 

 When changes are random, ‘detection probability’ is 
the product of 2nd and 3rd components 

 Recall that ‘detection probability’ also has spatial and 
camera components in camera-trap studies 
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What if Occupancy 

Changes? 
 Immigration/emigration only; ‘occupancy’ 

parameter relates to probability is present at 
a unit at end/beginning of season 
respectively. 
 should allow detection probability to vary 

within a season. 

 should pool some survey occasions. 

 

 Open models permitting staggered entry 
and departure times (only 1 entry/depart per 
season)  
 Single-season models (Kendall et al. 2013) 

 Multiple seasons (Chambert et al. 2015) 
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What if Occupancy 

Changes? 

 Some non-random changes may 

cause biases. 

 

 Is a ‘season’ defined appropriately? 

 

 Is time between surveys appropriate? 

 

 Area of active research. 
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Lack of Independence 

 Surveys are not independent if the outcome of 

survey A is dependent upon the outcome of 

survey B. 

 

 Some forms of dependence may be 

accommodated with good designs or modelling. 

 

 In some instances, parameter estimates may 

be OK, but standard errors too small. 
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Lack of Independence 

 To account for ‘trap response’ (unusual in 
CT studies); define a survey-specific 
covariate that equals 1 for all surveys after 
first detection at a site, 0 otherwise. 

Xij 

h 1 2 3 4 

0101 0 0 1 1 

1101 0 1 1 1 

0001 0 0 0 0 

0000 0 0 0 0 
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Accounting for Lack of 

Closure/Independence 

 “Spatial Correlation” option in PRESENCE 
(Hines et al. 2010, 2014) 

 

 Motivating example: surveying tigers on trails in 
India 

 

 Introduce 2 new parameters 
 θ – Pr(tiger on trail given not on trail  in previous 

segment): thta0 

 θ’ – Pr(tiger on trail given on trail  in previous 
segment): thta1 

 θ’’ – Pr(tiger on trail in first segment) 
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Accounting for Lack of 

Closure/Independence 

 

   

   

   

   

1 2 3 4 5

1 2 3 4

2 3 4 5

2 3 4

Pr 01110 ψi

p p p p p

p p p p

p p p p

p p p

           
 
           
  
 

           
 

            

h
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Accounting for Lack of 

Closure/Independence 

 

     

     

     

     

1 2 3 4 5

1 2 3 4

1 2 4 5

1 2 4

1

1

Pr 01010 ψi

p p p p p

p p p p

p p p p

p p p

            
 
            
 
 

             
 

           
 
   

h
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Accounting for Lack of 

Closure/Independence 

 Could also possibly be applied to 

account for temporal correlation or 

non-random changes in occupancy 

within a season. 

 

 Example: useful for modeling N.A. 

Breeding Bird Survey data 
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Unmodelled Heterogeneity 

In occupancy probabilities 

 parameter estimates should still be 

valid as average values across the 

units surveyed. 

 

In detection probabilities 

 occupancy will be underestimated. 

 covariates may account for some 

sources of variation. 
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Incorporating Heterogeneity 

 Finite Mixtures 

 Assume occupied units consist of G 

groups. 

 Each group has a different p. 

 Group membership is unknown hence 

a unit may belong to any of the G 

groups. 

       1 1 1 1 1 2 2Pr 10 ψ π 1 1 π 1p p p p       h
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Incorporating Heterogeneity 

 Random Effects 

 Assume pi is a random value from a 

continuous probability distribution 

(e.g., beta distribution, logit-normal). 

 

 Closed form expressions possible for 

some distributions. 

 

 Easily implemented using WinBUGS. 



51 

Abundance Induced 

Heterogeneity 

 Differences in the local abundance of 

the species between units may induce 

heterogeneity in detection probability. 

 

 Royle and Nichols (2003) suggested 

an extension of the above method to 

accommodate this. 

  iN

j

N

ij rp  11][
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Abundance Induced 

Heterogeneity 

 Local abundance is unknown, but a 

spatial distribution could be assumed 
(e.g., Poisson). 

     

   

   

[1] [1] [1]

1 1 2 3

[2] [2] [2]
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1 2 3
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...
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i i i

i i i

l l l

i i i

l

Po p p p

Po p p p

Po l p p p










  

 



 
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Abundance Induced 

Heterogeneity 

     

   
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     

3
[1]

2

1

3
[2]

1

3
[ ]

1 1

Pr 000 1; 1

2; 1

...

0;

; 1 0;

ij

j

ij

j

l

ij

l j

Po p

Po p

Po

Po l p Po




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



 

  

 





  
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

 
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Abundance Induced 

Heterogeneity 

 Occupancy is now a derived 

parameter: (1–e–). 

 

 Implicit assumption that the number of 

animals at a unit is constant. 

 

 Care must be taken in how 

‘abundance’ should be interpreted. 
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Abundance Induced 

Heterogeneity 

 Similar model can result through 

random effect on complementary log-

log link function for p. 

 

 A good approach for incorporating 

heterogeneity in detection for 

occupancy estimation, less reliable if 

inferences about abundance are 

desired. 
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Species Misidentification 

(False Positives)  

 If species is falsely detected then 

occupancy could be overestimated. 

 

 Much recent work; now a separate 

lecture 

 

 Perhaps not so important with 

camera-trap data? 
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Assessing Model Fit 

 MacKenzie and Bailey (2004) suggest 

a test based on the observed and 

expected number of sites with each 

possible detection history. 

 

 The expected number is predicted by 

the model, which may include 

covariates. 
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Assessing Model Fit 

   

 

 For example, for the history 101: 

 
1

Pr
s

h i

i

E


 h

Unit 

1 0.30 0.76 0.042 

2 0.35 0.74 0.050 

3 0.40 0.72 0.058 

4 0.45 0.70 0.066 

Total 0.216 

ψ̂i
ˆ

ip  Pr 101
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Assessing Model Fit 

   

 

 Use parametric bootstrap to assess 
the evidence for lack of fit. 

 

   

 

 used to adjust SE’s and AIC values. 

 
2

h h

h h

O E
TS

E




ˆ
B

TS
c

TS

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Assessing Model Fit 

 Test has been shown to perform well to identify 
poor model structure w.r.t. detection 
probabilities, but not occupancy probabilities. 

 

 Found to have generally low-power, especially 
for the sample sizes expected in many 
applications (s<100). 

 

 Recommend ≥10,000 bootstraps. 
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Assessing Model Fit 

 Test should be conducted on the most 

complicated model under 

consideration (the global model) and 

results applied to all models in 

candidate set. 

 e.g., if from global model             , this 

value is used to adjust AIC values and 

SE’s for all models. 

ˆ 1.53c 
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Assessing Model Fit 

 Posterior predictive checks could be 

used within a Bayesian setting to 

determine whether observed features 

of the data is “similar” to what a fitting 

model would expect. 
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Finite Population 

 In some circumstances, the sample of s 
units may constitute a large fraction of 
the population of interest. 

 

 Strictly speaking, the methods above 
estimate the probability of occupancy. 
 an underlying characteristic of the 

population. 

 

 The proportion of units occupied is a 
realisation of this process. 
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Finite Population 

 Distinction between them is of little 

practical consequence for ‘infinite’ 

populations, but may be for ‘finite’ 

populations. 

 

 SE’s will be too large if not accounted 

for. 
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Finite Population 

 The proportion of occupied sites could 

be calculated as: 

 

 

 

 

 SE derived from delta method 
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Finite Population 

 When no covariates in the model, 

variance (ie SE2) of the proportion is: 

       

       
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          
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Finite Population 

 Alternatively, easily implemented using the 

data augmentation approach. 

 

 Presence/absence of the species is 

predicted for units where species not 

detected. 

 

 Occupancy state can also be predicted for 

units that were never surveyed. 
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Finite Population 
model {

for (i in 1:s) {

z[i] ~ dbern(psi)

z1[i] <- z[i]+1

for (j in 1:k) {

h[i,j] ~ dbern(p[j,z1[i]])

}

}

psi.fs<-sum(z[])/s

## define prior distributions for model parameters

psi~dunif(0,1)

for (j in 1:k) {

p[j,1] <- 0

p[j,2] ~ dunif(0,1)

}

}

Post. Distn.  

mean = 0.56, sd = 0.10 

{2.5, 50, 97.5} %iles =  

 {0.37, 0.56, 0.78} 

Post. Distn. * 

mean = 0.56, sd = 0.08 

{2.5, 50, 97.5} %iles =  

 {0.46, 0.54, 0.74} 
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Spatial Correlation 

 Probability of occupancy at a unit may depend upon 
whether a ‘neighbouring’ unit is also occupied. 

 

 Some forms of clustering may be well explained by 
covariates. 

 

 May not be important to account for if interest is in an 
overall measure of occupancy. 

 

 May be more important if interest is in maps or 
predictions of unit-level occupancy. 
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Spatial Correlation 

 What fraction of cells are occupied? 

 What would be the appropriate SE? 
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Spatial Correlation 

 Recent simulations have confirmed 

that overall estimates are unbiased, 

with appropriate standard errors, 

without accounting for spatial 

correlation when units are sampled 

randomly. 
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Spatial Correlation 

 Sargeant et al. (2005) suggested an 

approach using image restoration 

methods. 

 doesn’t generalize easily to 

incorporate covariates. 

 

 Magoun et al. (2007) assumed 

spatially correlated residuals with 

logistic regression. 
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Spatial Correlation 

 Alternatively, could model occupancy with 
the autologistic function. 

 essentially the logit link with an ‘effect’ 
related to the number of occupied 
neighboring units. 

 

 
• gi is a function of the occupied ‘neighboring’ units 

 

 But the exact occupancy state of units will 
often be unknown… 

0 1 1 2logit(ψ )i i ix g    
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Spatial Correlation 

 Theoretically, could integrate over all 

unknown occupancy states for all 

units in the landscape (i.e., develop 

ODL). 

 

 Practically, much easier to develop 

the complete data likelihood and use 

data augmentation or EM algorithm. 
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Spatial Correlation 

 Detection probability may also be a 

function of the number of neighboring 

occupied units (e.g., harder to detect 

a species at the edge of it’s range). 
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Summary 

 Historically, investigating patterns in 
occupancy has been the main focus of such 
studies. 

 A suite of flexible methods is now available 
that account for: 

 detectability 

 covariates 

 unequal sampling effort 

 heterogeneity 

 finite populations 

 spatial correlation 

 Useful for assessing a snapshot of a 
population, but not for understanding the 
underlying dynamics. 


